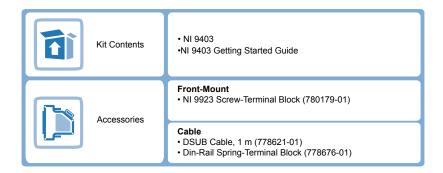
NI-9403 Specifications

Contents

U 0 4 0 0 B	_
II 0/02 Datachoot	_
II-9403 Datasheet	

NI-9403 Datasheet



- 5 V/TTL, sinking/sourcing digital I/O
- Bidirectional, configurable by line with shift-on-the-fly capability
- 60 VDC, CAT I isolation
- Industry-standard 37-pin DSUB connector
- -40 °C to 70 °C operating, 5 g vibration, 50 g shock

The NI-9403 is a 32-channel, 7 µs bidirectional digital I/O module for any NI CompactDAQ or CompactRIO chassis. You can configure the direction of each digital line on the NI-9403 for input or output. Each channel is compatible with 5 V/TTL signals and features 60 VDC, CAT I isolation. The NI-9403 also features ±30 V overvoltage protection and can source up to 2 mA output current per channel.

In an NI CompactDAQ chassis, you can use the NI-9403 as only a static (softwaretimed) digital I/O module. Due to the serial transfer of data, you cannot use these modules to route timing or triggering signals. With the NI-9403 in a CompactRIO chassis, you can use LabVIEW FPGA to program the NI-9403 for implementing custom counter/timers, pulse generation, and much more.

C SERIES DIGITAL INPUT/OUTPUT MODULE COMPARISON						
Product Name	Signal Levels	Channels	Update Rate	Direction	Connectivity	Isolation Continuous
NI 9381	LVTTL	4	1 μs	Bidirectional	DSUB	None
NI 9401	5 V/TTL	8	100 ns	Bidirectional	DSUB	60 VDC Ch-Earth
NI 9402	LVTTL	4	55 ns	Bidirectional	BNC	None
NI 9403	5 V/TTL	32	7 μs	Bidirectional	DSUB	60 VDC Ch-Earth

NI C Series Overview

NI provides more than 100 C Series modules for measurement, control, and communication applications. C Series modules can connect to any sensor or bus and allow for high-accuracy measurements that meet the demands of advanced data acquisition and control applications.

 Measurement-specific signal conditioning that connects to an array of sensors and signals

- Isolation options such as bank-to-bank, channel-to-channel, and channel-to-earth ground
- -40 °C to 70 °C temperature range to meet a variety of application and environmental needs
- Hot-swappable

The majority of C Series modules are supported in both CompactRIO and CompactDAQ platforms and you can move modules from one platform to the other with no modification.

CompactRIO

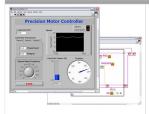
CompactRIO combines an open-embedded architecture with small size, extreme ruggedness, and C Series modules in a platform powered by the NI LabVIEW reconfigurable I/O (RIO) architecture. Each system contains an FPGA for custom timing, triggering, and processing with a wide array of available modular I/O to meet any embedded application requirement.

CompactDAQ

CompactDAQ is a portable, rugged data acquisition platform that integrates connectivity, data acquisition, and signal conditioning into modular I/O for directly interfacing to any sensor or signal. Using CompactDAQ with LabVIEW, you can easily customize how you acquire, analyze, visualize, and manage your measurement data.

Software

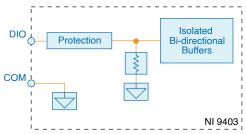
LabVIEW Professional Development System for Windows


- Use advanced software tools for large project development
- Generate code automatically using DAQ Assistant and Instrument I/O Assistant
- Use advanced measurement analysis and digital signal processing
- Take advantage of open connectivity with DLLs, ActiveX, and .NET objects
- Build DLLs, executables, and MSI installers

NI LabVIEW FPGA Module

- Design FPGA applications for NI RIO hardware
- Program with the same graphical environment used for desktop and real-time applications
- Execute control algorithms with loop rates up to 300 MHz
- Implement custom timing and triggering logic, digital protocols, and DSP algorithms
- Incorporate existing HDL code and third-party IP including Xilinx IP generator functions
- Purchase as part of the LabVIEW Embedded Control and Monitoring Suite

NI LabVIEW Real-Time Module


- Design deterministic real-time applications with LabVIEW graphical programming
- Download to dedicated NI or third-party hardware for reliable execution and a wide selection of I/O
- Take advantage of built-in PID control, signal processing, and analysis functions
- Automatically take advantage of multicore CPUs or set processor affinity manually
- Take advantage of real-time OS, development and debugging support, and board support

NI LabVIEW Real-Time Module Purchase individually or as part of a LabVIEW suite

Circuitry

The NI-9403 provides overvoltage, overcurrent, and short-circuit protection and isolated bi-directional buffers for each DIO channel.

Figure 1. NI 9403 Circuitry

The DIO channels have Schmitt trigger inputs and are compatible with 5 V/TTL logic devices. Each input channel has hysteresis for improved performance with noisy and non-monotonic input signals. Each channel also has a pull-down resistor.

NI-9403 Specifications

The following specifications are typical for the range -40 °C to 70 °C unless otherwise noted. All voltages are relative to COM unless otherwise noted.

Caution Do not operate the NI-9403 in a manner not specified in this document. Product misuse can result in a hazard. You can compromise the safety protection built into the product if the product is damaged in any way. If the product is damaged, return it to NI for repair.

Caution Le NI-9403 ne doit en aucun cas être utilisé d'une autre façon que celle spécifiée dans ce document. Une mauvaise utilisation du produit peut s'avérer dangereuse. Si le produit est endommagé de quelque manière que ce soit, la sécurité intégrée dans le produit risque d'en être compromise. Si le produit est endommagé, le renvoyer à NI pour réparation.

Input/Output Characteristics

Number of channels	32 digital input/output channels
Input/output type	TTL, single-ended
Default power-on line direction	Input
Input Current (0 V ≤ V _{in} ≤ 4.5 V)	±250 μA maximum
Module output current[1]	64 mA maximum
Input capacitance	30 pF

Timing

Input

Setup time [2] 10 ns minimum

Hold time^[3] 60 ns minimum

Output

Propagation delay^[4] 330 ns maximum

Channel-to-channel skew^[5] 265 ns maximum

${\bf Update/transfer~time}^{\underline{[6]}}$

cRIO-9151 R Series Expansion chassis 8 µS maximum

All other chassis	7 μS maximum
Direction change time	18 μS maximum
Overvoltage protection Channel-to- COM	±30 V maximum on up to 8 channels at a time; however, continued use at this level will degrade the life of the module.
MTBF	763,325 hours at 25 °C; Bellcore Issue 2, Method 1, Case 3, Limited Part Stress Method

Digital Logic Levels

Input	
Voltage	-0.25 V to 5.25 V
High, V _{IH}	2.2 V minimum
Low, V _{IL}	0.8 V maximum
Hysteresis, V _H	0.2 V minimum
Output	
High V (F 2 V magazine v ma)	
High, V _{OH} (5.2 V maximum)	
High, V_{OH} (5.2 V maximum) Sourcing 100 μA	4.75 V minimum
	4.75 V minimum 4.4 V minimum
Sourcing 100 μA	

Sinking 100 μA 0.1 V maximum

Sinking 2 mA 0.26 V maximum

Power Requirements

Power consumption from chassis

Active mode 1 W maximum

Sleep mode 25 µW maximum

Thermal dissipation (at 70 °C)

Active mode 1 W maximum

Sleep mode 25 µW maximum

Physical Characteristics

Dimensions	Visit <u>ni.com/dimensions</u> and search by module number.
Weight	150 g (5.3 oz)

Safety Voltages

Connect only voltages that are within the following limits:

Channel-to-COM	±30 V maximum on up to 8 channels at a time, Measurement Category I
Isolation	

Channel-to-channel None

Channel-to-earth ground

Continuous 60 V DC, Measurement Category I

Withstand

1,000 V RMS, verified by a 5 s dielectric withstand test Up to 3,000 m altitude

Up to 5,000 m altitude 860 V RMS, verified by a 5 s dielectric withstand test

Hazardous Locations

U.S. (UL)	Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, AEx nA IIC T4 Gc
Canada (C-UL)	Class I, Division 2, Groups A, B, C, D, T4; Ex nA IIC T4 Gc
Europe (ATEX) and International (IECEx)	Ex nA IIC T4 Gc DEMKO 07 ATEX 0626664X IECEx UL 14.0089X

Safety Compliance and Hazardous Locations Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1
- EN 60079-0, EN 60079-7

- IEC 60079-0, IEC 60079-7
- UL 60079-0, UL 60079-7
- CSA C22.2 No. 60079-0, CSA C22.2 No. 60079-7

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:

- EN 61326 EMC requirements; Industrial Immunity
- EN 55011 Emissions; Group 1, Class A
- CE, C-Tick, ICES, and FCC Part 15 Emissions; Class A

Note For EMC compliance, operate this device with shielded cabling.

CE Compliance 🤇 🗧

2014/34/EU; Potentially Explosive Atmospheres (ATEX)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Shock and Vibration

To meet these specifications, you must panel mount the system.

Operating vibration

5 g RMS, 10 Hz to 500 Hz Random

Sinusoidal 5 g, 10 Hz to 500 Hz

Operating shock 30 g, 11 ms half sine; 50 g, 3 ms half sine; 18 shocks at 6 orientations

Environmental

Refer to the manual for the chassis you are using for more information about meeting these specifications.

Operating temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 70 °C
Storage temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 85 °C
Ingress protection	IP40
Operating humidity (IEC 60068-2-30)	10% RH to 90% RH, noncondensing
Storage humidity (IEC 60068-2-30)	5% RH to 95% RH, noncondensing
Pollution Degree	2
Maximum altitude	5,000 m

Indoor use only.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

- ●●● 中国 RoHS— NI 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)
 - $\frac{1}{2}$ Module output current is the maximum guaranteed current that the module can drive from all the I/O lines without going into an overcurrent state.
 - ² **Setup time** is the amount of time input signals must be stable before reading from the module.
 - $\frac{3}{2}$ **Hold time** is the amount of time input signals must be stable after initiating a read from the module.

- ⁴ **Propagation delay** is the amount of time after writing to the module that the output signals become valid.
- $\frac{5}{2}$ **Channel-to-channel skew** is the amount of time between the first output signal updating and the last output signal updating.
- ⁶ The update/transfer and direction change times are valid when the module is used in a CompactRIO system. When used in other systems, driver software and system latencies impact these times.